Band Subset Selection for Hyperspectral Image Classification
نویسندگان
چکیده
منابع مشابه
Band Subset Selection for Hyperspectral Image Classification
This paper develops a new approach to band subset selection (BSS) for hyperspectral image classification (HSIC) which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS), rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS), as most traditional band selection methods do. In doing so...
متن کاملA joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
Band selection for remotely sensed image data is an effective means to mitigate the curse of dimensionality. Many criteria have been suggested in the past for optimal band selection. In this paper, a joint band-prioritization and band-decorrelation approach to band selection is considered for hyperspectral image classification. The proposed band prioritization is a method based on the eigen (sp...
متن کاملBand Selection with CFI and Supervised Classification for Hyperspectral Images
In this paper, we propose a new feature selection method for hyperspectral images. Firstly, the bands are selected by combining the information entropy, classification separability and correlation coefficients with the Choquet fuzzy integral. After that, maximum likelihood classification method is used for the classification. Experiments on the AVIRIS dataset show that the proposed method remov...
متن کاملMethodology for Hyperspectral Band and Classification Model Selection
Feature selection is one of the fundamental problems in nearly every application of statistical modeling, and hyperspectral data analysis is no exception. We propose a new methodology for combining unsupervised and supervised methods under classification accuracy and computational requirement constraints. It is designed to perform not only hyperspectral band (wavelength range) selection but als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2018
ISSN: 2072-4292
DOI: 10.3390/rs10010113